Self-similarity for data mining and predictive modeling: a case study for network data
نویسندگان
چکیده
Recently there are a handful study and research on observing self-similarity and fractals in natural structures and scientific database such as traffic data from networks. However, there are few works on employing such information for predictive modeling, data mining and knowledge discovery. In this paper we study, analyze our experiments and observation of self-similar structure embedded in Network data for prediction through Self Similar Layered Hidden Markov Model (SSLHMM). SSLHMM is a novel alternative of Hidden Markov Models (HMM) which proven to be useful in a variety of real world applications. SSLHMM leverage HMM power and extend such capability to self-similar structures and exploit this property to reduce the complexity of predictive modeling process. We show that SSLHMM approach can captures self-similar information and provides more accurate and interpretable model comparing to conventional techniques.
منابع مشابه
Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملPredictive analytics that takes in account network relations: A case study of research data of a contemporary university
Contemporary organisations incorporate large amount of invisible networks between their employees. The structure of such networks impacts the information fusion within the organisation. Taking into account the influence of such network structures in predictive modeling will be beneficial for the quality of organisational strategic planning. Network mining methods (the social network analysis of...
متن کاملPredicting Type2 Diabetes Using Data Mining Algorithms
Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...
متن کاملA Proposed Model to Identify Factors Affecting Asthma using Data Mining
Introduction: The identification of asthma risk factors plays an important role in the prevention of the asthma as well as reducing the severity of symptoms. Nowadays, the identification process can be performed using modern techniques. Data mining is one of the techniques which has many applications in the fields of diagnosis, prediction, and treatment. This study aimed to identify the effecti...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کامل